Code: 20EC3401

II B.Tech - II Semester - Regular Examinations - JULY 2022

ANALOG CIRCUITS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

UNIT - I

1. a) Draw a feedback amplifier in block-diagram form. Identify each block, and state its function.

6 M

b) What are the four possible topologies of a feedback amplifier? Identify the output signal X_o and the feedback signal X_f for each topology.

8 M

OR

2. a) With a neat block diagram explain the working of voltage series feedback amplifier. How are the overall gain, input and output impedances affected in these amplifiers?

8 M

b) Determine the voltage gain, input and output impedances with feedback for a voltage series feedback amplifier having A=100, R_i =10k Ω , R_o =20k Ω for a feedback factor of i) β =1 and ii) β =0.5

6 M

<u>UNIT – II</u>

3. a) Explain with a neat diagram and relevant expressions an op-amp non inverting amplifier.

8 M

	b)	The op-amp 741 is connected as an inverting amplifier with R_1 =1k Ω and R_f =4.71k Ω . Compute the closed loop parameters: A_f , R_{if} and R_{of} . Given A=400000, R_i =33M Ω and R_o =60 Ω ; supply voltages are ±13V; Max output voltage swing=±13V, Unity gain bandwidth = 0.6MHz	6 M
4.	a)	OR What is an instrumentation amplifier? With a neat	
		circuit diagram explain an instrumentation amplifier	
		using a transducer bridge.	8 M
	b)	With a neat circuit diagram explain the op-amp based	
		inverting scaling amplifier and averaging circuit with	
		relevant expressions for the output.	6 M
		UNIT-III	
5.	a)	What is an Oscillator? Explain the basic principles of	
	,	Oscillators.	6 M
	b)	With a neat circuit diagram and relevant expressions	
		explain the op-amp based RC phase shift Oscillator.	8 M
		OR	
6.	a)	Define power amplifiers and list the types of power	
		amplifiers based on the location of Q point, conduction	
		angle and efficiency.	6 M
	b)	angle and efficiency. Explain the Class B output stage. Prove that the	6 M
	b)	angle and efficiency.	6 M 8 M

<u>UNIT – IV</u>

a)		8 M
b)	•	0 1/1
,	C=0.1 μ F. Determine the positive pulse width t_c ,	
	negative pulse width t _d and free-running frequency.	6 M
	OR	
a)	Draw and Explain the circuit and frequency response of	
	a wide band-pass filter.	6 M
b)	Explain the working of a first-order high pass	
	Butterworth filter with a neat circuit diagram and	
	frequency response. Write the relevant design	
	equations.	8 M
	TINITED X7	
\		
a)	Explain the operation of Weighted Resistor DAC.	6 M
b)	Explain the operation of 4-bit R-2R DAC with neat	
	circuit. For the R-2R DAC, with R=10k Ω and R _F =20k Ω	
	and V _{REF} =5V, determine the output voltage when the	
	inputs are $b_0=b_1=5V$ and $b_2=b_3=0V$	8 M
	OR	
a)	Explain the working of a successive approximation type	
	ADC.	7 M
b)	Explain the operation of Dual-slope ADC.	7 M
	b)a)b)	negative pulse width t_d and free-running frequency. OR a) Draw and Explain the circuit and frequency response of a wide band-pass filter. b) Explain the working of a first-order high pass Butterworth filter with a neat circuit diagram and frequency response. Write the relevant design equations. $\underline{UNIT-V}$ a) Explain the operation of Weighted Resistor DAC. b) Explain the operation of 4-bit R-2R DAC with neat circuit. For the R-2R DAC, with R=10k Ω and R_F =20k Ω and V_{REF} =5V, determine the output voltage when the inputs are b_0 = b_1 =5V and b_2 = b_3 =0V OR a) Explain the working of a successive approximation type